- MOTT, N. F. & STEVENS, K. W. H. (1957). Phil. Mag. 2, 1364.
- PIPER, W. (1958). Unpublished results.
- SLATER, J. C. (1951). Phys. Rev. 81, 385.
- WATSON, R. E. (1959). *Technical Report* No. 12, Solid State and Molecular Theory Group, M.I.T. (Unpublished.)
- WATSON, R. E. (1960a). Phys. Rev. 118, 1036.
- WATSON, R. E. (1960b). Phys. Rev. 119, 1934.
- WATSON, R. E. & FREEMAN, A. J. (1961a). Acta Cryst. 14, 27.

Acta Cryst. (1961). 14, 234

The Crystal Structure of Gadolinium Trichloride Hexahydrate*

120. 1125.

30, 59,

2, 148.

995.

Solids, 10, 147.

By Massimo Marezio, † H. A. Plettinger and W. H. Zachariasen

Department of Physics, University of Chicago, Chicago, Illinois, U.S.A. and Division of Physics, Argonne National Laboratory, Argonne, Illinois, U.S.A.

(Received 24 June 1960)

 $GdCl_3.6 H_2O$ is monoclinic with space group P2/n and two molecules in the cell

 $a = 9.651, b = 6.525, c = 7.923 \text{ Å}; \beta = 93.65^{\circ}.$

All atomic positions (except for hydrogen) were determined with high precision.

The structure contains complexes $[Cl_2Gd(OH_2)_6]$ which are held together by O-H · · · Cl bonds. Thus one third of the chlorine atoms are not bonded to gadolinium atoms. The only symmetry element of a complex is a twofold axis. The bond lengths are:

 $Gd-Cl = 2.768, Gd-O = 2.39-2.42, O-H \cdot \cdot \cdot Cl = 3.14-3.24 \text{ Å}$.

Introduction

The investigation to be reported on in the following is part of the general crystal chemical studies of 4fand 5f elements in which this laboratory has been engaged over a number of years.

The specific compound to be discussed, $GdCl_{3}.6 H_{2}O$, is representative of an isostructure series with numerous members. It is definitely known that the corresponding compounds of neodymium, samarium, erbium (Pabst, 1931; Iveranova, Tarasova & Umanskii, 1951) and of plutonium have the same structure as $GdCl_{3}.6 H_{2}O$, and it is probably true that most of the analogous chlorides and bromides of 4f and 5felements, of yttrium and possibly of scandium belong to the same structure type.

Because of the ease with which large (although hygroscopic) single crystals can be prepared extensive magnetic and spectroscopic measurements have been made on many of these compounds. It is hoped that the structure results will be useful in the interpretation of these data.

Goniometric measurements have been reported

(Pabst, 1931) for GdCl₃.6 H_2O and SmCl₃.6 H_2O , and unit-cell dimensions have been published (Iveranova *et al.*, 1951) for the samarium and neodymium chlorides.

WATSON, R. E. & FREEMAN, A. J. (1960). Phys. Rev.

WEISS, R. J. & DEMARCO, J. J. (1958). Revs. Mod. Phys.

WEISS, R. J. & DEMARCO, J. J. (1959). Phys. Rev. Letters,

WEISS, R. J. & FREEMAN, A. J. (1959). J. Phys. Chem.

WOOD, J. H. & PRATT, G. W., JR. (1957). Phys. Rev. 107.

The single crystals used in the present investigation were furnished by Prof. G. H. Dieke of Johns Hopkins University.

 $GdCl_3$ 6 H_2O is monoclinic with two molecules in a unit cell of dimensions

$$a = 9.651 \pm 0.001, \ b = 6.525 \pm 0.001, c = 7.923 \pm 0.001 \ \text{\AA}; \ \beta = 93.65 \pm 0.02^{\circ}.$$

The calculated density is 2.478 g.cm.⁻³. The only regular absences among the reflections are H0L when H+L is odd, corresponding to space group symmetry P2/n or Pn.

Determination of the structure

All intensity measurements were made on a General Electric XRD-3 spectrometer rebuilt for single crystal work, using a proportional counter and filtered Cu K_N radiation. All data were taken on one crystal which had been ground into a sphere of radius

$2.83 \pm 0.02 \times 10^{-2}$ cm.

Since the crystals are hygroscopic, the sphere was coated with a solution of Canada balsam in benzene.

^{*} Work done under the auspices of the Atomic Energy Commission.

[†] On leave from Istituto di Chimica Generale e Inorganica dell'Universita di Roma.

Table 1. Final parameters

		Atom	Position	. r			y		z		B in Å ²		
		\mathbf{Gd}	2e	4		0.152	21 ± 2		ł	(0.72 ± 3		
		Cl_1	2f	3		0.370	69 ± 4		i	3	3.06 ± 11		
		Clu	4g	0.0587	+ 4	0.83	70 ± 8	0.26	01 ± 4	2	2.92 ± 8		
		OT	4g	0.2813	+12	0.04	71 ± 19	0.54	32 ± 12	2	2.94 ± 21		
		O ₁₁	4g	0.1423	± 12	0.42	54 ± 20	0.08	88 ± 12	5	3.24 ± 22		
		0_{11}	49	0.4406	± 12	0.29	88 ± 20	0.10	58 ± 12	:	3.26 ± 22		
			Table	2. Obse	erved an	d calci	ulated stru	cture (actors				
HKL	F_{o}	F_{c}	HKL	F_{o}	F_{c}		HKL	F_o	F_{c}		HKL	F_{o}	F_{c}
010	67	60	$21\overline{2}$	28	-22		161	50	- 46		917	20	-20
101	102	96	311	38	-41		$12\overline{7}$	8	8		$27\overline{5}$	16	-13
101	103	-103	220	29	-21		027	18	17		10.1.6	14	14
110	80	-66	212	21	17		426	13	14		239	9	8
011	77	-68	311	56	50		$82\overline{3}$	45	-44		182	22	22
200	91	91	$22\overline{1}$	84	-81	÷	260	23	-21		10, 1, 5	23	23
ШĪ	66	64	$10\overline{3}$	48	- 49		$52\overline{6}$	34	34	1	817	33	31
111	69	-71	221	90	84		$80\overline{4}$	42	45	1	$12, 1, \overline{2}$	11	-11
002	114	-134	054	21	18		$71\overline{5}$	17	-18		0,0,10	36	-37
210	42	-35	060	52	48		910	33	- 33		$28\overline{2}$	16	13
211	102	-114	307	27	28		813	61	57		808	20	25
211	109	110	154	38	37		91 T	32	31		$15\overline{8}$	25	27
012	52	-50	236	33	-32		$22\overline{7}$	47	47	i	2,0,10	23	25
020	40	-37	714	31	31		254	8	- 6		12,1,1	28	-27
$11\overline{2}$	19	16	160	32	28		127	17	-17		058	6	6
$20\overline{2}$	61	53	615	23	22		$26\overline{1}$	14	13		$11,0,\bar{5}$	27	- 30
112	40	36	154	28	28		$28\overline{1}$	38	-35		$61\overline{9}$	22	-23
120	85	-82	061	20	18		916	27	27		1,1,10	19	20
$30\overline{1}$	40	-32	$31\overline{7}$	31	30		281	34	32	:	0,1,10	20	-21
021	24	9	$70\overline{5}$	29	- 33		082	10	-10		$16\overline{7}$	19	-21
202	64	60	. 161	40	37		175	35	-33		067	9	10
3 01	58	-43	217	42	42		12,1,1	28	28		158	21	22
121	14	-15	$25\overline{4}$	9	5		12, 1, 0	10	12		509	28	- 31
310	71	70	822	5	4	l l	$18\overline{2}$	23	23		083	15	19
121	68	64	901	39	44		$12.0.\bar{2}$	26	-30				

The intensities of all reflections 0KL, 1KL, 2KL, H0L, H1L, H2L were measured.

It was immediately evident from the experimental structure factors that the two gadolinium atoms per unit cell are in positions $\pm (\frac{1}{4}, y, \frac{1}{4})$ with $y \approx 0.153$. These positions are compatible with either P2/n or Pn. Preliminary values for the chlorine and oxygen parameters were found with the aid of ordinary and generalized Fourier difference projections on the (100) and (010) plane. In making these projections the space group symmetry P2/n was assumed. Were the symmetry instead Pn, then the number of peaks due to chlorine and oxygen atoms would have been twice the number actually observed. Accordingly it was concluded that P2/n was indeed the correct space group.

The final parameter values, for all but the hydrogen atoms, were obtained by least-squares refinement using the Busing-Levi (1959) program for IBM-704, and all 794 experimental structure factors. The Thomas-Umeda (1957) *f*-curve, corrected for anomalous dispersion (Dauben & Templeton, 1955), was used for gadolinium. For chlorine and oxygen the *f*-curves of Berghuis *et al.* (1955) were assumed. Isotropic temperature factors were used in the refinement. The calculations gave an *R* factor of 0.06 and the parameter values shown in Table 1. The degree of agreement between observed and calculated structure factors is shown in Table 2, which includes small groups of reflections with consecutive values of $\sin \theta/\lambda$ taken from the beginning, the middle and the end of the complete table of data.

Table 3. Hydrogen positions

Atom	x	y	z
H_{I}	0.272	0.920	0.602
H_{II}	0.364	0.082	0.608
H_{HI}	0.124	0.484	0.987
HIV	0.117	0.548	0.140
Hv	0.534	0.322	0.149
HVI	0.476	0.258	0.002

A direct determination of the hydrogen parameters was not attempted. As will be discussed in the next section each oxygen atom has two chlorine neighbors at the distance of $3\cdot16-3\cdot24$ Å, the angle between the two directions being $89-97^{\circ}$. These observations indicate strongly that the short oxygen to chlorine distances represent bonds $O-H \cdots Cl$. If the hydrogen atoms are placed on these oxygen to chlorine connection lines and at a distance of 0.96 Å from the oxygen atom, the hydrogen parameter values of Table 3 result. The inclusion of the hydrogen atoms in the calculation does on the whole improve the agreement for reflections at small scattering angles.

Discussion of the results

It is an unexpected feature of the structure that one third of the chlorine atoms (the Cl₁-atoms) form no bonds with gadolinium atoms. Indeed, the shortest Gd-Cl₁ distance is greater than 5 Å.

In the structure there are complexes $[Cl_2Gd(OH_2)_6]$, each Cl_{11} atom and each oxygen atom being bonded to one gadolinium atom. These complexes are held together by $O-H \cdots Cl_1$ and $O-H \cdots Cl_{11}$ bonds.

The configuration about gadolinium is shown in Fig. 1. The only symmetry element of the complex is a two-fold axis. The bond lengths within the complex $\frac{dF^2}{dt} = -\frac{2}{3}\frac{768}{268} + 0.008$

 $\begin{array}{rrrr} Gd-2 & Cl_{11} & 2 \cdot 768 \pm 0 \cdot 008 \ \mbox{\AA} \\ -2 & O_{1} & 2 \cdot 42 & \pm 0 \cdot 002 \\ -2 & O_{11} & 2 \cdot 39 & \pm 0 \cdot 02 \\ -2 & O_{111} & 2 \cdot 42 & \pm 0 \cdot 02 \end{array}$

The closest oxygen and chlorine approaches in the complex are

$$O_{I}-O_{II} = 2.80, Cl_{II}-O_{III} = 3.20, Cl_{II}-Cl_{II} = 3.71 \text{ Å}$$
.

Each oxygen atom has a Cl₁ atom at a distance of $3 \cdot 17 - 3 \cdot 24$ Å and a Cl₁₁ atom of an adjacent complex at $3 \cdot 14 - 3 \cdot 18$ Å. These short distances suggest the presence of bonds O-H \cdots Cl, and this interpretation is given further support by the fact that the angle between the two O-H \cdots Cl bonds is 89–97°.

Conversely each Cl_{I} atom forms six $Cl_{I} \cdots H-O$ bonds and each Cl_{II} atom three $Cl_{II} \cdots H-O$ bonds in addition to the Cl_{II} -Gd bond. The individual bond distances for oxygen and chlorine atoms are listed below.

Fig. 1 shows the structure projected on the (010) plane. Large filled circles represent gadolinium atoms and small filled circles hydrogen atoms. The very large open circles are chlorine atoms and the other open circles oxygen atoms. Numbers attached to the circles give height in Å above the projection plane. The bond lengths in Å within the complex about gadolinium are also given. Only some of the hydrogen atoms have been included.

$O_{I}-Gd$ (1)	2.42 ± 0.02 Å
$O_{I}-H_{I}\cdots Cl_{I}$ (1)	$3 \cdot 24 \pm 0 \cdot 02$
$O_1 - H_{II} \cdots Cl_{II}$ (1)	$3 \cdot 18 \pm 0 \cdot 02$
$\angle O_{I}-H_{I}:O_{I}-H_{II}$	92°
$O_{II}-Gd$ (1)	2.39 ± 0.02 Å
$O_{II} - H_{III} \cdots Cl_I$ (1)	$3 \cdot 21 \pm 0 \cdot 02$
$O_{II} - H_{IV} \cdots Cl_{II}$ (1)	3.14 ± 0.02
$\angle O_{II} - H_{III} : O_{II} - H_{IV}$	97°
O111-Gd	2.42 ± 0.02 Å
O_{III} - $H_V \cdots Cl_I$	$3 \cdot 17 \pm 0 \cdot 02$
O_{III} - H_{VI} ··· Cl_{II}	3.16 ± 0.02
0 II 0 II	000
$\angle \mathbf{O}_{\mathrm{III}}$ -Hv: $\mathbf{O}_{\mathrm{III}}$ -Hvi	89-
$\angle \mathbf{O}_{\mathrm{III}} - \mathbf{H}_{\mathrm{V}} : \mathbf{O}_{\mathrm{III}} - \mathbf{H}_{\mathrm{VI}}$	89-
	89 ⁻ 3·24 ± 0·02 Å
	89 ⁻ 3·24 ± 0·02 Å 3·21 ± 0·02
	$ \begin{array}{r} 89^{-1} \\ 3 \cdot 24 \pm 0 \cdot 02 & \text{\AA} \\ 3 \cdot 21 \pm 0 \cdot 02 \\ 3 \cdot 17 \pm 0 \cdot 02 \\ \end{array} $
	89^{-1} $3.24 \pm 0.02 \text{ Å}$ 3.21 ± 0.02 3.17 ± 0.02 2.768 ± 0.008
	89^{-} 3.24 ± 0.02 Å 3.21 ± 0.02 3.17 ± 0.02 2.768 ± 0.008 3.18 ± 0.02
$ \geq O_{III} - H_V : O_{III} - H_{VI} $ $ Cl_I \cdots H_I - O_I (2) $ $ Cl_I \cdots H_{III} - O_{II} (2) $ $ Cl_I \cdots H_V - O_{III} (2) $ $ Cl_{II} - Gd \qquad (1) $ $ Cl_{II} \cdots H_{II} - O_I (1) $ $ Cl_{II} \cdots H_{IV} - O_{III} (1) $	89^{-} $3 \cdot 24 \pm 0 \cdot 02 \text{ Å}$ $3 \cdot 21 \pm 0 \cdot 02$ $3 \cdot 17 \pm 0 \cdot 02$ $2 \cdot 768 \pm 0 \cdot 008$ $3 \cdot 18 \pm 0 \cdot 02$ $3 \cdot 14 \pm 0 \cdot 02$

The observed bond lengths Gd–Cl and Gd–O are about 0.06–0.07 Å larger than anticipated on the basis of published ionic radii (Zachariasen, 1954). The sum of the ionic radii of chlorine and oxygen (3.27 Å) is only slightly larger than the experimental values of 3.21 Å for the O–H···Cl_I and of 3.16 Å for the O–H···Cl_{II} bonds. The Cl_I atom forms six Cl···H–O bonds, the Cl_{I1} atom three Cl···H–O bonds and one Cl–Gd bond. The larger value for Cl_I···H–O bond is probably attributable to the larger coordination number for the Cl_I atom.

Detailed balance of valence requires a strength of about 0.8 for the O-H and 0.2 for the $H \cdot \cdot \cdot Cl$ bond.

The authors are deeply grateful to Prof. G. H. Dieke of Johns Hopkins University for the single crystals used in the investigations and to Messrs. J. W. Bagby and N. J. Purcell for valuable assistance in carrying out the calculations on the IBM 650 and 704 machines of the Argonne National Laboratory. Massimo Marezio wishes to express his gratitude to il Comitato Nazionale per le Ricerche Nucleari, Rome, Italy for the fellowship given to him.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BUSING, W. R. & LEVI, H. A. (1959). Oak Ridge National Laboratory Report 59-4-37.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- IVERANOVA, V. I., TARASOVA, V. P. & UMANSKII, M. M. (1951). Izrest. Akad. Nauk. S.S.S.R., Ser. Fiz. 15, 164.
- PABST, A. (1931). Amer. J. Science, 22, 426.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- ZACHARIASEN, W. H. (1954). National Nuclear Energy Series IV-14A, p. 775.